US009116747B2

a2 United States Patent

Andrianov

US 9,116,747 B2
Aug. 25,2015

(10) Patent No.:
(45) Date of Patent:

(54) SPARSE THREADED DETERMINISTIC
LOCK-FREE CHOLESKY AND LDLT
FACTORIZATIONS

(75) Inventor: Alexander Andrianov, Cary, NC (US)
(73) Assignee: SAS Institute Inc., Cary, NC (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 502 days.

(21) Appl. No.: 13/527,670

(22) Filed: Jun. 20,2012
(65) Prior Publication Data
US 2013/0346984 Al Dec. 26, 2013
(51) Imnt.ClL
GO6F 9/50 (2006.01)
GO6F 17/16 (2006.01)
(52) US.CL
CPC GOG6F 9/5038 (2013.01); GO6F 17/16

(2013.01); GOGF 2209/506 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,601,080 B1*

7,792,895 B1*
8,788,556 B2 *

7/2003 Gargccooeveiiiiniinns 708/502
9/2010 Juffaetal. 708/607
7/2014 Zhang et al. 708/400
.. 708/446

8,805,912 B2* 82014 Nakanishi
2007/0143759 Al* 6/2007 Ozguretal. ... 718/102
OTHER PUBLICATIONS

Yinglong Xia; Hierarchical Scheduling of DAG Structured Compu-
tations on Manycore Processors with Dynamic Thread Grouping;
JSSPP 2010, LNCS 6253, pp. 154-174,2010.*

156

Hogg J.D. et al,, “A DAG-based Sparse Cholesky Solver for
Multicore Architectures” Technical Report, Science and Technology
Facilities Council, ISSN 1358-6254, Apr. 27, 2009, 20 pages.*
Hogg J.D. et al., “Achieving bit compatibility in sparse direct solvers”
Science and Technology Facilities Council, Preprint RAL-P-2012-
005, ISSN 1361-4762, Oct. 2012, 13 pages.*

Stanimire Tomov; Dense Linear Algebra Solvers for Multicore with
GPU Accelerators; IEEE 2010; 8 pages.™

Heejo Lee; Task Scheduling using a Block Dependency DAG for
Block-Oriented Sparse Cholesky Factorization, 1999 ACM; 8
pages.*

Demmel et al., “A Supemodal Approach to Sparse Partial Pivoting”,
Siam J. Matrix Anal. Appl. vol. 20, No. 3, pp. 720-755, 1999 Society
for Industrial and Applied Mathematics.

Gupta, Anshul, “WSMP: Watson Sparse Matrix Package, Part I—Di-
rect Solution of Symmetric Sparse Systems”, IBM Research Report,
Version 12.1, RC 21886 (98462) Nov. 16, 2000 (Last update: Jan. 23,
2012), 50 pages.

HSL__MA97, Science & Technology Facilities Council, Package
Specification, Jan. 9, 2012, 18 pages.

(Continued)

Primary Examiner — Abdullah Al Kawsar
(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP

(57) ABSTRACT

Systems and methods are provided for implementing a sparse
deterministic direct solver. The deterministic direct solver is
configured to identify at least one task for each of a plurality
of dense blocks, identify operations on which the tasks are
dependent, store in a first data structure an entry for each of
the dense blocks identitying whether a precondition must be
satisfied before tasks associated with the dense blocks can be
initiated, store in a second data structure a status value for
each of the dense blocks that is changeable by multiple
threads, and assign the tasks to a plurality of threads, wherein
the threads execute their assigned task when the status of the
dense block corresponding to their assigned task indicates
that the assigned task is ready to be performed and the pre-
condition associated with the dense block has been satisfied if
the precondition exists.

51 Claims, 20 Drawing Sheets

158
Update task level = level | , -

Assign level to each task

Update task level is

for blocks updated

added to dependency list |

150

s

Generate dependency

of factorized block g
causing update

160

154 162

For each blobk, generate Populate data structure !

list of tasks on which it

S list

134

Generate and Order

Generate list pointers

with dependency task list |

depends for each block

Points to levet of first task this

Tasks by block

152

block depends on

Populate data structure
with fist pointers

164

166

US 9,116,747 B2

Page 2
(56) References Cited Kurzak et al., “Implementing Linear Algebra Routines on Multi-Core
Processors with Pipelining and a Look Ahead”, University of Ten-
OTHER PUBLICATIONS nessee, Knoxville, TN, pp. 147-156, 2007.

Pardiso, User Guide Version 4.1.2, Schenk and Gartner, Feb. 12,
Hogg et al., “Design of a Multicore Sparse Cholesky Factorization 2011, 58 pages.

using DAGs”, Science & Technology Facilities Council, Dec. 23,
2009, 20 pages. * cited by examiner

US 9,116,747 B2

Sheet 1 of 20

Aug. 25,2015

U.S. Patent

(s)ayols
v.iva

suibug sisAjeuy

(S)43aNYIS

(S)0d ¥3sn

AHOWIN
F1dvdvad
~d431NdNOD

A/
Va4

801

/

(0192

US 9,116,747 B2

Sheet 2 of 20

Aug. 25,2015

U.S. Patent

¢ 9l

o N

/
{ uonisodwoosp J1g140
pa ,@oz_wanoomv ?wm_Oco_

9zl - -
Vv JO uonezuope
4/1 [eoUaWNN wiopad
vzl
uonejnuiuad Buonpai-jjiy
LA ® pISIA 0] ¥ JO sisAjeuy
JljOQUIAS LoUBd
zzl
\\\\ h //
y v XUBp _A_
e)
SN S
ozL -

US 9,116,747 B2

Sheet 3 of 20

Aug. 25,2015

U.S. Patent

SYSE| JOpJ0 puE S1BIsusL)

*

souapuadap pue sHse)

Ajuep) 0} OYQ JO W0} Ul
V JO UOleZIDIoR] dleinWIS

4

I3 sx001q oJul 7 Jojoe) Jids

/ uonsodwodsp Q1 40

\uopisodwoosp AYs8oyD, .

/.
\

~ N

o a9zl

V JO uoiezuooe
[BOLBDWINN ULIOKDd)

N

*

SisAjeue
fepousadns wiouad

vzl
Y 1O SisAjeuy
OlOQUIAS wiIoped [\,
, zel
7
7 - /,//
S /,
,H Y Xujen

US 9,116,747 B2

Sheet 4 of 20

Aug. 25, 2015

U.S. Patent

\\\\ N \\\ //

\ Z 00]q azuoyoe \WA - “,, Z Mo0iq a1epdn :
\\h\ Y / .n\ & \ /N
TN Ipl il

1
Sl

\ / \
\ / \
- — - 0do0|q BzUOPES |,
/ a | / \
/ y
e £hl o o

US 9,116,747 B2

Sheet 5 of 20

Aug. 25,2015

U.S. Patent

7/

a4

9tl

)SB) yoeo
10} solouspuadop Aljusp}

f

#00[q
yoea Joj syse} Ajjuap)

/ uopyisodwoosp al 10
A_,./coEwanoomu AysejoyD; o,

\

=9z
syse]
Jepio pue sjeieusn |\
V JO UOnBZUO}ORH
% [EOUSWINN Wuopad i,
sspuapuadap pue syse)} vei
0 Amuepioyovaijowlopul
-7 1y JO uonezZUOoeR) SlBInWIS | N
P \\\\V \ J ,/,/ , ..,,/
zen /
" iy A Vv 10 sisAjeuy
$3400{q Ojui 7 10308} JljdS OHOQUIAG Wiiopdd M
4 ad
/
/
: 7
sishjeue L/
/. |epowedns wiopsd - .
8t v Xuje

US 9,116,747 B2

Sheet 6 of 20

Aug. 25, 2015

U.S. Patent

siautod isy| 9jeIBUD)

*

sy
Aouspuadsp ejelausn)

A

yas

8cl

9 "'9Old

syse|
18pIQO pue 8)eIBusL)

4/

AL
A

el

OV({Jd jo wicj ul y
JO UONBZII0108) 9)eInuIS

»

fl
1
$300}q Ol 7 J0joB} }idS

- RN

\\co_:wogsoomc J1ad

\uonisodwiooap Aysajoyn; i

;N

o

\
/

%

»

sisAjeue
jepoutadns wiopad

A
¥V JO uonezuoloe
[eoUBWINN Wiouad N

174!
/,
N V 10 sisAjeuy
DIJOqUWAS wiopsd
zel
;.\\ ™ .
\\ ./..,
v XLJB I
,/,,, \\ ./,/,//,
) -0z

US 9,116,747 B2

Sheet 7 of 20

Aug. 25,2015

U.S. Patent

siajuod 1si yim

JALE]

uo spuadap »20iq

ainonas ejep aendod

300jq Yyoea 10}

SIL} ¥S€) 1S4 JO |9A8] 0} SjuIod

A

N,
RN
3

spuadap

181 Msel Aouapusdap yum

ainonis ejep aendod

y

i/

Sl
Y.

861

J YOIYM UO Syse) JO Il

siauiod 1sH S1BIBUSS)

f

¥0o0iq Aq syse]
19pIQ pue 9leIBusD

sy

aieisual “400jq yoes Jo4

1223 *

Aouspuadep sjeisusn

77
A

0si

1A8] = |9A9)] jsE) dlepdn

ajepdn Duisneo

|

pajepdn $)00iq 10}

. 181§ Aouspusdsp o) peppe

SI [oA8] yse) ayepdn

A

%00|q POZLIOIO.) JO

¥Se) Yyoes 0) (9A9] ublissy

A
S

g6l

US 9,116,747 B2

m:\coEwoquomn 1al 08
Luosodwoosp Aysejoyn; i,

Sheet 8 of 20

Aug. 25,2015

U.S. Patent

. ovse} wioped spesiy %
90z »
V J0 uopezuoe
o
Spes.Il) 0} SYSE} S}EVO|Y EOUSLINN ULIOLOY
¥0Z * pzL
¥o0|q Yyoee
1/ 10§ snjeis jo0|q ozijeniu|
20z

v JO sisAjeuy
JIOQUWIAS Wiouad

Vv Xien

US 9,116,747 B2

Sheet 9 of 20

Aug. 25,2015

U.S. Patent

1214
/, N,
N

Lonoe Joj Apeal
S1)Se) Uaym Syse}
paubisse swiopad

peaiy yoeg

!

yse} anbjun
e paubisse pealy)

e
s
/

syse} waopad speaay |

902

f

-

/ uonisoduwoosp ,al L_o,/_,

~

a|gejiene yoeg

7
\ 12

A4

9/
S

Y02

A
v
yavd

SpeaIy) 0] SYSE) 8)800|Y

4

3%00|q Yyoea
0} SNJelS Yo0|q azieniu)

2oze

\uonisodwiodap Ajsajoyd, i
N S
~ -7 9L
A
Y 10 uonezuojoe 4
[eoHsWINN Wiolad Ny
174"
A
V JO sisAjeuy
OIOQWIAS Wwiopad AN
zzl

A

V X

US 9,116,747 B2

Sheet 10 of 20

Aug. 25,2015

U.S. Patent

0l OId

\m /
e

154

%
/i

S
A*TA

S8IBUILLS) _
NPpeasyL T ON
092 _

A/
a4
;

96¢e

uonoe
io} Apeau si yse)
USUM YSe] Wiouad

4

a4/
/

[OAS] JUBLIND
S, pEOIY} pue N U0

paseq N peaiy) 0}
3SE) 1XaU 81R00||y

wm%»

SN
.
s A~ N N

pd o
e pauwiouad aq N
mx Buipsau xwm. L
/,,, :,\

wuoped

| 0] yse) paubisse aq

0} Apeali N peaJyl

US 9,116,747 B2

Sheet 11 of 20

Aug. 25,2015

U.S. Patent

i/

98¢

pauuopuad yse}

Jaye o0jg pajoaye ay) Jo
Jayuiod 181 Aouspuadap

SjusWBIoUI pealy |

a

ApeaJ si)se] 8)esiput
SanjeA sne1s usym
yse} swiopad peasy]

11 Ol

4214

»

Apeau si yse) usym
BUILLLIBIAP 0] SanjeA
SNje)sS SYoaYD peaiy]

uonoe 1o} Apeai
S1)Se) UBym S)se)
paubisse suwiiouad
peaiy) yoey

»

¥)SEe)] Sop0ooap pesiy |

syse} wuopad speauy

US 9,116,747 B2

Sheet 12 of 20

Aug. 25,2015

U.S. Patent

(Z-0 swusWwale yum)
Rely sneig

(2-0 syuswsle Yym)
Aelily J9JUI0d 1817

(v-0 syuewale Yim)
Keiry 1817 Aouspuadag -

9.1

L XLBW esus ajduwex3

\
\
\
\
\
\
\
k _
\
\
\
\
\
\
\
\
\

v
Va4

041

} 219019

04009

Vil

s
/

US 9,116,747 B2

Sheet 13 of 20

Aug. 25,2015

U.S. Patent

€1 Ol

. 10 UOnEeZIOIOB [BOLBSWNN

U %00iqg

L ¥00iq
JO UONBZIO)OB S |EOLIBWINN

0 %9019

vV JO uonezuope
[BOLBWINN WOLad

JO UOBZIIOIE [BOLSWINN

A

spealy ajgejieae
pue sapuspuadsap
0} 109lgns jojjeled
ul speaJy) aydginw
AQ pawiopad

US 9,116,747 B2

Sheet 14 of 20

Aug. 25,2015

U.S. Patent

PBZLI0YOE] S 400(q,
21e21pUI 0} 198 SI sNjels
4 3}00jq uonsjdwiod Jsyy

¥l "Old

%Se) SAj0S

Jpaziiojoey 8q o} Apeal si 300iq,
| ole0IpUl 0} J9S S| SNJEIS YOOI XSE]
SV eyepdn isel Jo uonajdwiod Jayy

10 9z10)oB} WIoMad

*

YSE]
ajepdn yoes jo uosjdwod isye
/1 Jeymod uomisod s Aouspuadap
. 1UaLIBIoU|

syse} o1epdn jje wiopad

X
OO[Q SISAjeuy [eouany

speaiy} ajgejieae
pue saisuspuadap
0} 109{gns jojjeled

. Ul peauy) 9eiedss AqQ |

- pawiopad yse) yoeq -

US 9,116,747 B2

Sheet 15 of 20

Aug. 25,2015

U.S. Patent

\\\\ /

cee

\\l\
8ic

Z- = snejs
¥ooiq abueyn

*

8zio}oe}

) - = SNJBIS Xo0ijgd >

.

5O >H

e AN
e .

\\\ /
- ~

. s

SNJE)S Y90|q %08UD

ON

U.S. Patent Aug. 25, 2015 Sheet 16 of 20 US 9,116,747 B2

226
Check diagonal |,/
gona S
block status
S
T
- N 228
s N y
No -~ S
< Status=-2
~ s
~ s
~ e

Check sub-diagonal |7/
block status

‘\\
.

e N 232

NQ/,./Status = level O?\\/?/
*._diagonal block -

\r(es
234
i/
Solve /
¢ 236
Change block |/
status = -2

FIG. 16

U.S. Patent

Aug. 25, 2015 Sheet 17 of 20 US 9,116,747 B2
238
Check both i/
— updating block)
status
P // \-\\\\\ 240
NO e d \“\\ /'//’f‘,//,
< Status=-2
\\\ N e ///
\\\\\\ 'M///'
r’ €s
242
Check updated /,E/

block status

.4
AN
L
N

e
o

~ .
No_-Status = thread™ ./

244

;

o level - -
\“\\ /,/"'/
~
I’Yes
246
2/
Apply updates
L 248
Increment dependency /,7//
list position pointer of ¥~
the updated block
Set updated block 2§0
status to the level of the | ///

block stored at new ¢
dependency list pointer
position

FIG. 17

US 9,116,747 B2

Sheet 18 of 20

Aug. 25,2015

U.S. Patent

STESENADT £ POBL 19U

{parpaus) oy MApesi st

45 Ay 2200 Fess MJ

5 ..w &g wogpsod wimed 55
VT AN AR
PG O AE m«é
ey seiepan Adde puesieiz
B S »m&

SHLIAY
Ay

wﬁ,

2Sibs

PV EG O 4 PR

.h.w,.o 2t
éwvﬂ v.m IR s A
Y g RsR 7 Y0 A

I 2 01 O S DR IR

m ¢4 wf@ Ajyenng

S

t

i 3 A0 [URY {IE
oY SO 4T w..iﬁ % SO

R BN TP (SR T
{7~ sy g TR0 ,.a o %ﬁu wﬁ«{ﬁ £

99z

U.S. Patent Aug. 25, 2015 Sheet 19 of 20 US 9,116,747 B2

800 806
COMPUTER-
READABLE
MEMORY
802 ’ 808
804
PROCESSING SYSTEM DATA
STORE(S)
F I G Linear Algebra Engine
u
Data Matrix
812
820
830
COMPUTER-
822 READABLE
USER PC MEMORY | g37
A
t S
USER PC SERVER(S) DATA
STORE(S)
822 I
USER PC

PROCESSING SYSTEM Data Matrix

826
Linear Algebra 836
Engine

AL
2

-
©
vy

U.S. Patent

850

854

L

Aug. 25, 2015 Sheet 20 of 20

882 884

, ia
4™ :

| Sy Sdicenghione

886

intesiaoe

852

US 9,116,747 B2

880

868

Chaplay

Duplay
interiane

860

856

858

882

,

)

R FaM

864

'-.,

Communication

866

€3 M

Hard L

862

FIG. 20

US 9,116,747 B2

1
SPARSE THREADED DETERMINISTIC
LOCK-FREE CHOLESKY AND LDLT
FACTORIZATIONS

FIELD

The technology described in this patent document relates
generally to computer-implemented systems for solving lin-
ear algebraic problems. In particular described herein are new
ways of implementing sparse deterministic direct solvers
such as Cholesky and LDL” without using locks.

BACKGROUND

In sparse linear algebra, Cholesky and LDL” factorizations
of symmetric matrices are of importance due to their large
applicability in optimization, partial differential equations,
and many other areas of scientific computing. When devel-
oping threaded versions of these factorizations, it is important
to have the ability to reproduce the results of computations.
When this happens, the factorizations are called determinis-
tic. Also, solutions that do not use explicit locking mecha-
nisms are easier to port and implement with different hard-
ware and operating systems.

SUMMARY

In accordance with the teachings described herein, systems
and methods are provided for implementing a sparse deter-
ministic direct solver. The deterministic direct solver is con-
figured to analyze a symmetric matrix by defining a plurality
of'dense blocks, identity at least one task for each of the dense
blocks, and identify for each task any operations on which the
task is dependent. The deterministic direct solver is further
configured to store in a first data structure an entry for each of
the dense blocks identifying whether a precondition must be
satisfied before tasks associated with the dense blocks can be
initiated, store in a second data structure a status value for
each of the dense blocks and make the stored status values
changeable by multiple threads, and assign a plurality of the
tasks to a plurality of threads, wherein each thread is assigned
a unique task, wherein each of the plurality of threads
executes its assigned task when the status of the dense block
corresponding to its assigned task indicates that the assigned
task is ready to be performed and the precondition associated
with the dense block has been satisfied if the precondition
exists.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example system for imple-
menting sparse deterministic direct solvers such as Cholesky
and LDL? without using locks.

FIG. 2 is a flow diagram that depicts an example process
that the direct solver system may implement to perform
Cholesky or LDL” decomposition on a symmetric matrix A.

FIG. 3 is a flow diagram that illustrates example steps that
may be performed during the symbolic analysis phase of the
Cholesky or LDL decomposition.

FIG. 4 is a block diagram of an example Directed Acyclic
Graph (“DAG”) for an example dense matrix that contains 3
blocks.

FIG. 5 is a flow diagram that depicts example steps that
may be performed during the symbolic analysis phase of the
Cholesky or LDL decomposition based on a simulated DAG.

FIG. 6 is a flow diagram that depicts example steps used in
ordering the tasks during the symbolic analysis phase.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 7 is a flow diagram that depicts example steps that
may be performed to generate a dependency list and to gen-
erate list pointers.

FIG. 8 is a flow diagram that depicts example steps for
performing numerical factorization of matrix A.

FIG. 9 is a flow diagram that illustrates an example process
wherein multiple threads are assigned unique tasks during the
numerical factorization phase.

FIG. 10 is a flow diagram that depicts example steps for a
thread to perform to request a new assigned task.

FIG. 11 is a flow diagram that depicts example steps
executed by a thread to perform an assigned task.

FIG. 12 is a block diagram that illustrates relationships
between example blocks in a dense matrix and example data
structures utilized by the example direct solver to order tasks
in a deterministic Cholesky and LDL” direct solver.

FIG. 13 is a flow diagram that depicts an example process
wherein the numerical factorization of matrix A involves
multiple threads performing update, factorization and solve
tasks with respect to the various blocks.

FIG. 14 is a flow diagram that depicts an example process,
with respect to a particular block, wherein during the numeri-
cal phase, the update tasks are performed before factorize or
solve tasks are performed.

FIG. 15 is a flow diagram that depicts an example process
for determining when a thread can perform a factorize task.

FIG. 16 is a flow diagrams that depicts an example process
for determining when a thread can perform a solve task on a
sub-diagonal block.

FIG. 17 is a flow diagram that depicts an example process
for determining when a thread can perform an update task.

FIG. 18 is a flow diagram that depicts example steps for
performing numerical factorization of matrix A

FIGS. 19A, 19B, and 20 depict examples of systems that
may beused to implement a sparse deterministic direct solver.

DETAILED DESCRIPTION

Depicted in FIG. 11is a block diagram of an example system
100 for implementing sparse deterministic direct solvers such
as Cholesky and LDL” without using locks. The example
system 100 includes an analysis engine 102 that is imple-
mented in a computer system that may include one or more
server computers 104. The analysis engine 102 has access to
one or more data stores 106 that store data on which compu-
tations are performed. The analysis engine has access to com-
puter-readable memory 108, which store programming
instructions that when executed by one or more processors in
the computer system allow for implementation of sparse
deterministic direct solvers such as Cholesky and LDL” with-
out using locks. In operation, users may access the direct
solver system 100, for example, via user PC(s) 110 over one
or more network(s) 112.

FIG. 2 depicts an example process that the direct solver
system 100 may implement to perform Cholesky or LDL”
decomposition on a symmetric matrix A. In this example
process, factorization of a symmetric matrix A into either its
Cholesky decomposition A=L.L7, when A is positive definite,
or LDL” decomposition A=LDL7, otherwise, is performed in
two steps. During the 1% step (step 122), the symbolic analy-
sis of A is performed and a fill-reducing permutation is found.
During the 2"/ step (step 124), the actual computations on the
matrix A are performed to yield L (and D if LDL factoriza-
tion used).

Inparticular, at step 120, a symmetric matrix A is retrieved.
At step 122, the symbolic analysis of matrix A is performed to
yield a fill-reducing permutation. At step 124, a numerical

US 9,116,747 B2

3

factorization of matrix A is performed. This results in
Cholesky or LDL? decomposition on a symmetric matrix A
(step 126).

FIG. 3 illustrates example steps that are performed during
the symbolic analysis phase of the Cholesky or LDL” decom-
position. During this phase, the supernodal analysis of the
factorization is performed (step 128). The factor L is then
split, in a two-dimensional way, into blocks L, each of
roughly the same size (step 130). The task of factorizing A is
then simulated in the form of a Directed Acyclic Graph
(DAG) (step 132) in which nodes represent tasks to be per-
formed on blocks L,, and edges represent dependencies
between them. Each task represents a step in the actual
numerical factorization of A. The tasks are categorized into 3
basic types: block L, factorization, denoted by Factor(L),
block solve for block L, using block L ;,, denoted by Solve
(L L), and a block update of all affected blocks I from
either the same or other supernodes using two blocks L;,and
L, from the same supernode, denoted by Update(L;, Lz,
L;z). The tasks are also provided with an order to allow the
direct solver to be deterministic (step 134).

Depicted in FIG. 4 is an example DAG 140 for an example
dense matrix that contains 3 supernodal blocks: block O,
block 1, and block 2. For this example matrix, four tasks must
be performed to perform Cholesky or LDL? decomposition
on the matrix: factorize block 0 (node 142), solve block 1
(node 144), update block 2 (node 146), and factorize block 2
(node 148). The edges between the nodes represent depen-
dencies between the tasks. Edge 143 denotes that the solve
block 1 task (144) is dependent on the factorize block 0 task
(142). Edge 145 denotes that the update block 2 task (146) is
dependent on the solve block 1 task (144). Edge 147 denotes
that the factorize block 2 task (148) is dependent on the
update block 2 task (146).

Depicted in FIG. 5 are example steps for identifying tasks
and dependencies from the simulated DAG. The nodes of the
simulated DAG identify tasks for each supernodal block (step
136). The edges of the simulated DAG identify dependencies
for each task (step 138).

Depicted in FIG. 6 are example steps used in ordering the
tasks during the symbolic analysis phase. To perform a deter-
ministic factorization, in the example process, tasks are
assigned a specific order based on predetermined rules during
symbolic analysis. The task order is recorded through the
generation of a dependency list that may be stored in a data
structure (step 150). A list pointer array may also generated
(step 152) for use during the numerical phase to synchronize
and keep track of the next scheduled update for each block
L,

Specifically, for each block I, in the supernodal block
partitioning, the list of tasks on which block L, depends is
generated. This list is generated by reviewing all tasks that
provide updates to the block I;; and is retained in a data
structure that contains similar lists for other blocks included
in a factorization.

In these examples, levels are also used to help order tasks.
Although the execution order for factor and solve tasks can be
arbitrary as long as updates have been applied to them, the
execution order for update tasks should be ordered. To order
update tasks in this example, a number, referred to herein as a
level, is associated with each update task. Since each update
is of the form L, ,*L7, (or L, *(Lx*D)" in the LDL” case),
the level is set to be the position of the block L, in the block
array.

The levels are used in dependency lists to help order task
execution. For each block [, all blocks that are updated by
the L,, block are determined and L;;’s level is added to the

10

15

20

25

30

35

40

45

50

55

60

65

4

dependency list of each of those blocks that are updated by the
L,,block. Each block’s dependency list is terminated with an
empty level (e.g., —1), which is used to indicate that all the
updates have been applied already and the block is ready to be
factorized.

To synchronize updates, for each block L, the depen-
dency list position is maintained, in the list pointer array,
which will be used during the numerical phase to synchronize
block updates. During the numerical phase, the list pointer
will initially point to the location in the dependency list that
contains the level of the first block that will update L. The
list pointer will increment after each update is applied. When
the dependency list pointer for L, reaches the lastentry, L, is
ready to be factorized.

To make the factorization run faster and to allow better
thread synchronization, the status of each block I, may be
maintained in a status array. The status array includes a loca-
tion for each block wherein the latest block update level is
recorded. The level stored in a block’s status array location is
equal to the level in the dependency list array pointed to by the
dependency list pointer. When a block is ready to be factor-
ized, its status is changed to —1 and after the factorization the
block status is set to —2. In the example system, a single array
is used to store the status of all blocks.

Levels may be assigned to solve and factorize tasks as well
to convey DAG dependencies between them. In these
examples, level assignment can be done by making the level
of the task be simply the block position: L, for the factorize
task and L, for the solve task.

Use of levels with solve and factorize tasks allows the level
to also serve as an indicator of a thread’s progress during the
course of the actual factorization. During the numerical
phase, each thread can maintain the level of the block
involved in the task assigned to the thread and use that task
level in the numerical phase to keep the task execution order
in conformance with the task execution order determined
during the symbolic analysis phase. The thread can also use
the level for task fetching during numerical phase. At the start
of'the numerical phase, the thread unique id can be used as its
initial level for the task assignment.

Depicted in FIG. 7 are example steps that may be per-
formed to generate a dependency list and to generate list
pointers. To generate the dependency list (step 150), for each
block, the list of tasks on which the block is dependent is
generated (step 154). A level is assigned to each task (step
156). The level assigned to an update task is the level of the
factorizing block that causes the update (step 158). The
update task level is added to the dependency list for each
block that is updated by the update task (step 160). The
resultant list of tasks for each block contains the levels that
must be completed before the block can be factorized or
solved. A data structure, e.g., a dependency list array, is popu-
lated with the dependency list for each block (step 162).

The list pointers generated at step 152, include a pointer for
each block included in the factorization. Each pointer points
to the level of the first task on which the particular block
represented by that pointer depends (164). In particular, each
pointer points to a specific location in the dependency list
array associated with the particular block represented by that
pointer. A data structure, e.g., a list pointer array, is populated
with the list pointer value for each block (step 166).

Depicted in FIG. 8 are example steps for performing
numerical factorization of matrix A. At step 202, the initial
block status is set for each block. This block status is stored in
the status array. At step 204, tasks are allocated to the threads

US 9,116,747 B2

5

wherein each thread is allocated a separate task. At step 206,
each thread performs its assigned task when it is appropriate
to do so.

During this numerical phase, each available thread is
assigned a task according to a predefined scheduling mecha-
nism. A number of thread scheduling strategies may be
employed to create a linearized order of thread execution.

As an example, each thread may be assigned a task accord-
ing to a predefined scheduling mechanism and current thread
level. Each thread, based on its id number and the last worked
on task level, can determine the next available task to be
executed. This can be done, for example, by assigning the task
involving the block whose level is ‘numThreads’ (wherein
‘numThreads’ is the number of threads used) away from the
level of block involved in the previous task for this thread.

Since each update task is of the form L, *I.7,, for a fixed
block L, all the update tasks with K<=I have the same level
(equal to that of block L;). Hence to accomplish determinis-
tic ordering of tasks, a single thread can be designated to
execute all updates L, ,*L7,, for K<=I (and fixed L,,).

FIG. 9 illustrates an example process wherein multiple
threads are assigned unique tasks during the numerical fac-
torization phase. At step 252, each available thread is
assigned a unique task. At step 254, each thread performs its
assigned task when the assigned task is ready for action.

Depicted in FIG. 10 are example steps to be performed by
a thread when seeking an assigned task to perform. At step
256, a thread N is ready to be assigned a task to perform. At
step 258 a determination is made regarding whether a task
exists that has not yet been assigned to a thread that needs to
be performed. If no additional tasks exist, then the thread N
terminates (step 260). If an additional task exists, at step 262,
the next task is allocated to thread N based on N and the
thread’s current level. Then, at step 264, the thread performs
the task when the task is ready for action. After the task is
performed, the thread again checks to determine whether a
task exists that has not yet been assigned to a thread that needs
to be performed (step 258).

Depicted in FIG. 11 are example steps executed by a thread
to perform an assigned task. After a thread has been assigned
a task, the task is then decoded (step 282). At step 284, the
thread looks at the status value of the affected block and waits
for the task to be ready, for example, by comparing the
block’s status to the thread level (since the block’s status
contains the level of the next scheduled for that block task). At
step 286, the task is performed. After the task is completed
and the block L,; is updated, its dependency list pointer is
incremented one position to point to the level of the next task
affecting L, (step 288).

In this example, the status of each block can be accessed by
several threads simultaneously. To accomplish this, the status
array can be declared to be volatile and atomic operations can
be used to access and modify it, thus avoiding explicit locking
mechanism.

Depicted in FIG. 12 is an example illustrating relationships
between example blocks in a dense matrix and example data
structures utilized by the example direct solver to order tasks
in a deterministic Cholesky and LDL7 direct solver. In this
example, a dense matrix 170 having only one supernode in its
L factor and whose block partitioning contains only 2 blocks
in each direction is considered. The L factor can be repre-
sented using only 3 blocks (172, 174, and 176). Illustrated is
a dependency list array 178 for all blocks, a list pointer array
180, and a status array 182. The list pointer array 180 and the
status array 182 each have 3 elements since there are 3 blocks
in the example dense matrix. Each pointer element in the list
pointer array 180 points to a specific location in the depen-

10

15

20

25

30

35

40

45

50

55

60

65

6

dency list array 178. Specifically, each pointer points to the
level of'the first task on which the particular block represented
by that pointer depends. The contents of the dependency list
array 178 consist of levels of tasks on which each block
depends. The list pointer array 180 contains positions, within
the dependency list array 178 of levels of the tasks on which
each block currently depends. The arrows in the figure point
to those positions. The initial contents of the status array 180
are values stored in the dependency list array 178 at positions
pointed to by the list pointer.

In this example, tasks are dispatched to the threads based
on block number and thread number so that thread 0 gets the
task of factorizing block 0, thread 1 has the task of factorizing
block 1, thread 2 has the task of updating block 2, and thread
3 has the task of factorizing block 2.

Since the block 0 part of dependency list array 178 has only
an empty level, it has no dependencies and is ready to be
factorized. After ithas been factorized, its status is changed to
factorized—status [0]=—2—and the List Pointer Array [0] is
not used anymore. For block 1, its dependency list has status
0, meaning that its next dependency is on block 0. Hence it
needs to wait on block 0 to be factorized. Let us denote by
ATOMIC_ADD (a, b) the function that atomically adds value
‘b’to avolatile pointer ‘a’ and returns the initial value of a, and
let ATOMIC_SET (a, b) be a function that atomically sets
value of ‘a’to ‘b’. Then an example mechanism for the block
1 to wait on block 0 can be described as follows:

/* wait until block 1
depends on block 0 */
/* wait until block 0
is factorized */

while (ATOMIC__ADD (status [1], 0) 1= 0) ;

while (ATOMIC__ADD (status [0], 0) I=-2);

Assuming that thread 0 is done factorizing block 0, the
second condition is satisfied and block 1 gets factorized by
thread 1. Its status is then changed:

ATOMIC_SET (status[1],-2);/*mark blockl as factor-
ized*/

The contents of the status array are then:

For thread 2 to update block 2 with block 1, it uses “status
[2]=1"to indicate dependency on block 1. Hence it waits on it
to be factorized:

while(ATOMIC_ADD(status[1],0)!==2);/*wait until
block 1 is factorized*/

and also checks for block 2 to have its status equal to the level
of block 1:

/* wait until block 2
depends on block 1 */
ATOMIC__SET (status [2], depList [++listPointer [2]]) ; /* change
status of
block 2 */

while (ATOMIC__ADD (status [2], 0) I=1) ;

After block 1 is factorized, thread 2 applies updates to
block 2 and, using the list pointer array 180, changes the
status of block 2 to equal the next entry in the dependency list
array 178, which is -1.

Since the status of block 2 has been changed to -1, block 2
is ready for factorization and thread 3 proceeds with factor-
izing block 2.

US 9,116,747 B2

7

FIG. 13 illustrates an example process wherein the numeri-
cal factorization of matrix A involves multiple threads per-
forming update, factorization and solve tasks with respect to
the various blocks. Each thread performs its assigned tasks
after appropriate dependencies have been satisfied. The per-
formance of the tasks results in the numerical factorization of
each block.

FIG. 14 illustrates an example process, with respect to a
particular block, wherein during the numerical phase, the
update tasks (step 208) are performed before factorize or
solvetasks (step 210) are performed. To track progress toward
factorize or solve tasks being ready to be performed, the
dependency list position pointer is incremented after each
update task is completed (step 212). After the last update task
is completed, the block status is set to indicate that the block
is ready to be factorized (step 214). After a block factorize or
solve task has been completed, the block status is updated to
indicate that the block has been factorized.

FIGS. 15-17, illustrate example steps that can be executed
by threads for determining when to execute their assigned
tasks. In these examples, the threads use the block status array
to determine when to execute their assigned tasks. Depicted
in FIG. 15 is an example process for determining when a
factorize task can be performed. A particular thread that is
assigned a factorize task checks the status of the block asso-
ciated with the factorize task (step 218). At step 220, the
thread determines if the block status indicates that the block is
ready to be factorized, (status=-1 in this example). If the
block status does not indicate that the block is ready to be
factorized, the status is re-checked. If the block status indi-
cates that the block is ready to be factorized, then at step 222
the thread factorizes the block. Finally, after the block has
been factorized, the thread at step 224 changes the block
status to indicate that the block has been factorized (status=-2
in this example).

Depicted in FIG. 16 is an example process for determining
when a solve task can be performed on a sub-diagonal block.
At step 226, a thread that is assigned a solve task checks the
status of the diagonal block associated with the sub-diagonal
block. At step 228, the thread determines if the block status
indicates that the diagonal block has been factorized, (sta-
tus=-2 in this example). If the block status does not indicate
that the diagonal block has been factorized, the status is
re-checked. If the block status indicates that the diagonal
block has been factorized, then at step 230 the thread checks
the sub-diagonal block status. At step 232, if the block status
of the sub-diagonal block does not indicate that the sub-
diagonal block is ready to be solved, the status is re-checked.
If the block status indicates that the sub-diagonal block is
ready to be solved (status=level of diagonal block in this
example), then at step 234, the thread performs the solve task.
After the solve task is completed, the thread at step 236
changes the sub-diagonal block status. Finally, after the block
has been factorized, the thread at step 224 changes the block
status to indicate that the block has been factorized (status=-2
in this example).

Depicted in FIG. 17 is an example process for determining
when an update task can be performed. At step 238 a thread
that is assigned an update task checks the status of the blocks
that will cause the current block to update. At step 240, the
thread determines if the block statuses of the updating blocks
indicate that the blocks have been factorized, (status=-2 in
this example). If the block statuses do not indicate that the
blocks have been factorized, the statuses are re-checked. If
the block statuses indicate that the updating blocks have been
factorized, then at step 242 the thread checks the status of the
updated block. If the status of the updated block indicates that

35

40

45

8

the updated block is ready for updates (status=thread level in
this example) then at step 246 the thread applies the updates
to the updated block. Otherwise, the status of the updated
block is re-checked until the status indicates that the block is
ready for updates. After the updates are applied, the thread
causes the dependency list position pointer of the updated
block to be incremented (step 248). Finally, the thread at step
250 sets the updated block status to the level of the block
stored at the new dependency list pointer position.

Depicted in FIG. 18 are example steps performed by
threads during the numerical factorization of matrix A. Each
thread starts at step 266. At step 268, thread N attempts to get
the next task based on N and the thread’s current level. If there
is a new task that has not been assigned to a thread, thread N
decodes the task to get its type and blocks L, L ,and L,
used in performing the task (step 270). At step 272, a deter-
mination is made as to the task type: factor task, solve task, or
update task. If the task is a factor task, then step 274 is
implemented. If the task is a solve task, then step 276 is
implemented. If the task is an update task then step 278 is
implemented. After the task is performed, the process returns
to step 268 wherein thread N attempts to get the next task. If
no tasks are left, the thread is done and terminates (step 280).

In the example process of FIG. 18, each task type results in
the performance of a plurality of steps. For a factor task type
(274), thread N performs the following steps. First the thread
atomically checks block I, status until it becomes ready to
be factorized. Then, the thread sets its level to be that of block
L, Next, the thread factorizes block I, Finally, the thread
atomically sets block L, status to factorized and ready to be
used by other tasks.

For a solve task type (276), thread N performs the follow-
ing steps. First the thread atomically checks block L ,, status
until it becomes factorized. Then, the thread atomically
checks block L, status until it becomes equal to the level of
block I, Next, thread N’s level is set to be that of block L.
Then, the thread performs the solve task for block L,, using
block L ;. Finally, the thread atomically sets block L, status
to factorized and ready to be used by other tasks.

For an update task type (278), thread N performs the fol-
lowing steps. The level of thread N is set to be that of block
L, The thread atomically checks block L,; status until it
becomes factorized. The thread then atomically checks block
L, status until it becomes factorized. Next, the thread atomi-
cally checks each affected block L, status until it becomes
equal to the thread’s level. Then, the thread generates and
applies updates from blocks L, ,and L., to block L. Finally,
the thread atomically increments block L. dependency list
pointer position by 1, to point to the level of next updating
block. If the next updating block is empty, then L. is ready to
be factorized.

FIGS. 19A and 19B depict examples of systems that may
be used to perform factorization. For example, FIG. 19A
depicts an example of a system 800 that includes a standalone
computer architecture where a processing system 802 (e.g.,
one or more computer processors) includes a linear algebra
engine 804 being executed on it. The processing system 802
has access to a computer-readable memory 806 in addition to
one or more data stores 808. The one or more data stores 808
may include data matrices 812 upon which the matrix factor-
ization operations are to be performed.

FIG. 19B depicts a system 820 that includes a client server
architecture. One or more user PCs 822 access one or more
servers 824 running a linear algebra engine 826 on a process-
ing system 827 via one or more networks 828. The one or
more servers 824 may access a computer readable memory
830 as well as one or more data stores 832. The one or more

US 9,116,747 B2

9

data stores 832 may contain data matrices 836 upon which the
matrix factorization operations are to be performed.

FIG. 20 shows a block diagram of an example of hardware
for a standalone computer architecture 850, such as the archi-
tecture depicted in FIG. 19A that may be used to contain
and/or implement the program instructions of system
embodiments of the present invention. A bus 852 may con-
nect the other illustrated components of the hardware. A
processing system 854 labeled CPU (central processing unit)
(e.g., one or more computer processors), may perform calcu-
lations and logic operations required to execute a program. A
processor-readable storage medium, such as read only
memory (ROM) 856 and random access memory (RAM)
858, may be in communication with the processing system
854 and may contain one or more programming instructions
for performing an index join operation. Optionally, program
instructions may be stored on a computer readable storage
medium such as a magnetic disk, optical disk, recordable
memory device, flash memory, or other physical storage
medium. Computer instructions may also be communicated
via a communications signal, or a modulated carrier wave.

A disk controller 860 interfaces one or more optional disk
drives to the system bus 852. These disk drives may be exter-
nal or internal floppy disk drives such as 862, external or
internal CD-ROM, CD-R, CD-RW or DVD drives such as
864, or external or internal hard drives 866. As indicated
previously, these various disk drives and disk controllers are
optional devices.

Each of the element managers, real-time data buffer, con-
veyors, file input processor, database index shared access
memory loader, reference data buffer and data managers may
include a software application stored in one or more of the
disk drives connected to the disk controller 860, the ROM 856
and/or the RAM 858. Preferably, the processor 854 may
access each component as required.

A display interface 868 may permit information from the
bus 852 to be displayed on a display 870 in audio, graphic, or
alphanumeric format. Communication with external devices
may optionally occur using various communication ports
872.

In addition to the standard computer-type components, the
hardware may also include data input devices, such as a
keyboard 873, or other input device 874, such as a micro-
phone, remote control, pointer, mouse and/or joystick.

This written description uses examples to disclose the
invention, including the best mode, and also to enable a per-
son skilled in the art to make and use the invention. The
patentable scope of the invention may include other
examples. Additionally, the methods and systems described
herein may be implemented on many different types of pro-
cessing devices by program code comprising program
instructions that are executable by the device processing sub-
system. The software program instructions may include
source code, object code, machine code, or any other stored
data that is operable to cause a processing system to perform
the methods and operations described herein. Other imple-
mentations may also be used, however, such as firmware or
even appropriately designed hardware configured to carry out
the methods and systems described herein.

The systems’ and methods’ data (e.g., associations, map-
pings, data input, data output, intermediate data results, final
data results, etc.) may be stored and implemented in one or
more different types of computer-implemented data stores,
such as different types of storage devices and programming
constructs (e.g., RAM, ROM, Flash memory, flat files, data-
bases, programming data structures, programming variables,
IF-THEN (or similar type) statement constructs, etc.). It is

5

10

15

20

25

30

35

40

45

50

55

60

65

10

noted that data structures describe formats for use in organiz-
ing and storing data in databases, programs, memory, or other
computer-readable media for use by a computer program.
The computer components, software modules, functions,
data stores and data structures described herein may be con-
nected directly or indirectly to each other in order to allow the
flow of data needed for their operations. It is also noted that a
module or processor includes but is not limited to a unit of
code that performs a software operation, and can be imple-
mented for example as a subroutine unit of code, or as a
software function unit of code, or as an object (as in an
object-oriented paradigm), or as an applet, or in a computer
script language, or as another type of computer code. The
software components and/or functionality may be located on
a single computer or distributed across multiple computers
depending upon the situation at hand.It should be understood
that as used in the description herein and throughout the
claims that follow, the meaning of “a,” “an,” and “the”
includes plural reference unless the context clearly dictates
otherwise. Also, as used in the description herein and
throughout the claims that follow, the meaning of “in”
includes “in” and “on” unless the context clearly dictates
otherwise. Finally, as used in the description herein and
throughout the claims that follow, the meanings of “and” and
“or” include both the conjunctive and disjunctive and may be
used interchangeably unless the context expressly dictates
otherwise; the phrase “exclusive or” may be used to indicate
situation where only the disjunctive meaning may apply.

It is claimed:

1. A processor-implemented method for implementing a
sparse deterministic direct solver on a symmetric matrix
without using locks, comprising:

analyzing a symmetric matrix by defining a plurality of

dense blocks;

identifying at least one task for each of the dense blocks;

assigning a level to each of the tasks identified for each of

the dense blocks, wherein a level represents a scheduled
execution order for a task;
assigning a level to each of a plurality of threads to indicate
a progress of each thread through factorization;

storing, in a first data structure, a dependency list for each
of the dense blocks, wherein a dependency list includes
levels of tasks that update a dense block;

storing, in a second data structure, a status for each of the

dense blocks, wherein a stored status includes a level of
anext task to update for the dense block associated with
the status, and wherein the stored status is changeable by
one or more threads;

assigning a plurality of the tasks to the plurality of threads,

wherein each thread is assigned a unique task, and
wherein each of the plurality of threads executes an
assigned task when the status of the dense block that the
assigned task updates matches the level of the thread
executing the task; and

executing the tasks assigned to the threads,

wherein, when atask is completed, the status of the updated

dense block is updated according to a type of the task
completed.

2. The method of claim 1, wherein the second data structure
is volatile.

3. The method of claim 1, wherein the statuses for each of
the dense blocks can be atomically changed.

4. The method of claim 1, wherein a task is either a factor
task, a solve task, or an update task and wherein a factor task
involves factorizing a dense block, a solve task involves solv-
ing for one dense block using another dense block, and an

US 9,116,747 B2

11

update task involves generating and applying updates from
two dense blocks to a third dense block.

5. The method of claim 4, wherein after a factor task is
executed, a status of a dense block is updated to indicate that
the corresponding block is factorized and ready to be used by
other tasks.

6. The method of claim 4, wherein after a solve task is
executed, a status of a dense block is updated to indicate that
the corresponding block is factorized and ready to be used by
other tasks.

7. The method of claim 4, wherein after an update task is
executed, a status of a dense block is updated to indicate that
the corresponding block is ready to be factorized.

8. The method of claim 1, wherein after completing their
assigned tasks, the plurality of threads are assigned new tasks.

9. The method of claim 1, wherein two or more tasks are
executed by a same thread when the two or more tasks are
assigned a same level.

10. The method of claim 1, further comprising utilizing a
dependency list pointer associated with each dependency list,

wherein the dependency list pointer points a thread to an
initial task to be executed within its associated depen-
dency list, and

wherein the dependency list pointer increments after the
thread executes the initial task.

11. The method of claim 1, further comprising:

determining whether two or more tasks are assigned to a
same level; and

upon determining that two or more tasks are assigned to the
same level, executing the two or more tasks by a same
thread.

12. The method of claim 1, further comprising utilizing a
dependency list pointer associated with each dense block
dependency list,

wherein a dependency list pointer includes a location in a
dependency list of the level of the next task to be
executed by a thread.

13. The method of claim 12, further comprising:

incrementing the dependency list pointer by one after the
task execution.

14. The method of claim 1, wherein the status of a dense
block is changed to -1 to indicate that a dense block has all
tasks applied to the dense block and is ready to be factorized
once a last task associated with a dense block has been
executed.

15. The method of claim 1, wherein each thread is assigned
a unique level based on a thread logical identifier (ID) and
increments the unique level after each task completion by a
same amount in order to keep unique task fetching based on a
current thread level.

16. The method of claim 1, wherein each thread has a
status, and wherein the status of each thread differs from the
status of a dense block.

17. The method of claim 1, wherein the type of a task
comprises a factor task, a solve task, or an update task.

18. A computer-implemented sparse deterministic direct
solver system for performing linear algebraic computations
on a matrix, comprising:

one or more data processors;

a computer-readable storage medium encoded with
instructions for commanding the one or more data pro-
cessors to execute operations including:
analyzing a symmetric matrix by defining a plurality of

dense blocks;
identifying at least one task for each of the dense blocks;
identifying, for each task, any operations on which the
task is dependent;

10

20

25

40

45

50

65

12

assigning a level to each of the tasks identified for each
of the dense blocks, wherein a level represents a
scheduled execution order for a task;

assigning a level to each of a plurality of threads to
indicate a progress of each thread through factoriza-
tion;

storing, in a first data structure, a dependency list for
each of the dense blocks, wherein a dependency list
includes levels of tasks that update a dense block;

storing, in a second data structure, a status for each ofthe
dense blocks, wherein a stored status includes a level
of a next task to update for the dense block associated
with the status, and wherein the stored status is
changeable by one or more threads;

assigning a plurality of the tasks to the plurality of
threads, wherein each thread is assigned a unique
task, and wherein each of the plurality of threads
executes an assigned task when the status of the dense
block that the assigned task updates matches the level
of the thread executing the task;

executing the tasks assigned to the threads,

wherein, when atask is completed, the status of the updated

dense block is updated according to a type of the task

completed.

19. The direct solver system of claim 18 wherein the sec-
ond data structure is volatile.

20. The direct solver system of claim 18 wherein the sta-
tuses for each of the dense blocks can be atomically changed.

21. The direct solver system of claim 18 wherein a task is
either a factor task, a solve task, or an update task and wherein
a factor task involves factorizing a dense block, a solve task
involves solving for one dense block using another dense
block, and an update task involves generating and applying
updates from two dense blocks to a third dense block.

22. The direct solver system of claim 21 wherein after a
factor task is executed, a status of'a dense block is updated to
indicate that the corresponding block is factorized and ready
to be used by other tasks.

23. The direct solver system of claim 21 wherein after a
solve task is executed, a status of a dense block is updated to
indicate that the corresponding block is factorized and ready
to be used by other tasks.

24. The direct solver system of claim 21 wherein after an
update task is executed, a status of a dense block is updated to
indicate that the corresponding block is ready to be factor-
ized.

25. The direct solver system of claim 18 wherein after
completing their assigned tasks, the plurality of threads are
assigned new tasks.

26. The direct solver system of claim 18, wherein two or
more tasks are executed by a same thread when the two or
more tasks are assigned a same level.

27. The direct solver system of claim 18, further compris-
ing a dependency list pointer associated with each depen-
dency list,

wherein the dependency list pointer points a thread to an

initial task to be executed within its associated depen-
dency list, and

wherein the dependency list pointer increments after the

thread executes the initial task.

28. The direct solver system of claim 18, further compris-
ing instructions to command the one or more processors to:

determine whether two or more tasks are assigned to a

same level; and

upon determining that two or more tasks are assigned to the

same level, executing the two or more tasks by a same
thread.

US 9,116,747 B2

13

29. The direct solver system of claim 18, further compris-
ing a dependency list pointer associated with each dense
block dependency list,

wherein the dependency list pointer includes a location in

the dependency list of the level of the next task to be
executed by a thread.

30. The direct solver system of claim 29, further compris-
ing instructions to command the one or more processors to:

increment the dependency list pointer by one after the task

execution.

31. The direct solver system of claim 18, further compris-
ing instructions to command the one or more processors to
cause the status of a dense block to change to -1 to indicate
that a dense block has all tasks applied to the dense block and
is ready to be factorized once a last task associated with a
dense block has been executed.

32. The direct solver system of claim 18, further compris-
ing instructions for each thread to be assigned a unique level
based on a thread logical identifier (ID) and increment the
unique level after each task completion by a same amount in
order to keep unique task fetching based on a current thread
level.

33. The direct solver system of claim 18, wherein each
thread has a status, and wherein the status of each thread
differs from the status of a dense block.

34. The direct solver system of claim 18, wherein the type
of a task comprises a factor task, a solve task, or an update
task.

35. A non-transitory computer-program product, tangibly
embodied in a machine-readable non-transitory storage
medium, the storage medium including instructions config-
ured to cause a data processing apparatus to perform opera-
tions that include:

analyzing a symmetric matrix by defining a plurality of

dense blocks;

identifying at least one task for each of the dense blocks;

identifying, for each task, any operations on which the task

is dependent;

assigning a level to each of the tasks identified for each of

the dense blocks, wherein a level represents a scheduled
execution order for a task;
assigning a level to each of a plurality of threads to indicate
a progress of each thread through factorization;

storing, in a first data structure, a dependency list for each
of the dense blocks, wherein a dependency list includes
levels of tasks that update a dense block;

storing, in a second data structure, a status for each of the

dense blocks, wherein a stored status includes a level of
anext task to update for the dense block associated with
the status, and wherein the stored status is changeable by
one or more threads;

assigning a plurality of the tasks to the plurality of threads,

wherein each thread is assigned a unique task, and
wherein each of the plurality of threads executes an
assigned task when the status of the dense block that the
assigned task updates matches the level of the thread
executing the task; and

executing the tasks assigned to the threads,

wherein, when a task is completed, the status of the updated

dense block is updated according to a type of the task
completed.

36. The computer-program product of claim 35, wherein
the second data structure is volatile.

37. The computer-program product of claim 35, wherein
the statuses for each of the dense blocks can be atomically
changed.

10

25

35

40

14

38. The computer-program product of claim 35, wherein a
task is either a factor task, a solve task, or an update task and
wherein a factor task involves factorizing a dense block, a
solve task involves solving for one dense block using another
dense block, and an update task involves generating and
applying updates from two dense blocks to a third dense
block.

39. The computer-program product of claim 35, wherein
after completing their assigned tasks, the plurality of threads
are assigned new tasks.

40. The computer-program product of claim 39, wherein
after a factor task is executed, a status of a dense block is
updated to indicate that the corresponding block is factorized
and ready to be used by other tasks.

41. The computer-program product of claim 39, wherein
after a solve task is executed, a status of a dense block is
updated to indicate that the corresponding block is factorized
and ready to be used by other tasks.

42. The computer-program product of claim 39, wherein
after an update task is executed, a status of a dense block is
updated to indicate that the corresponding block is ready to be
factorized.

43. The computer-program product of claim 35, wherein
two or more tasks are executed by a same thread when the two
or more tasks are assigned a same level.

44. The computer-program product of claim 35, wherein
the operations further include utilizing a dependency list
pointer associated with each dependency list,

wherein the dependency list pointer points a thread to an

initial task to be executed within its associated depen-
dency list, and

wherein the dependency list pointer increments after the

thread executes the initial task.

45. The computer-program product of claim 35, wherein
the operations further include:

determining whether two or more tasks are assigned to a

same level; and

upon determining that two or more tasks are assigned to the

same level, executing the two or more tasks by a same
thread.

46. The computer-program product of claim 35, further
comprising utilizing a dependency list pointer associated
with each dense block dependency list,

wherein a dependency list pointer includes a location in a

dependency list of the level of the next task to be
executed by a thread.

47. The computer-program product of claim 46, wherein
the operations further include:

incrementing the dependency list pointer by one after the

task execution.

48. The computer-program product of claim 35, wherein
the status of a dense block is changed to -1 to indicate that a
dense block has all tasks applied to the dense block and is
ready to be factorized once a last task associated with a dense
block has been executed.

49. The computer-program product of claim 35, wherein
each thread is assigned a unique level based on a thread
logical identifier (ID) and increments the unique level after
each task completion by a same amount in order to keep
unique task fetching based on a current thread level.

50. The computer-program product of claim 35, wherein
each thread has a status, and wherein the status of each thread
differs from the status of a dense block.

51. The computer-program product of claim 35, wherein
the type of a task comprises a factor task, a solve task, or an
update task.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,116,747 B2 Page 1 of 1
APPLICATION NO. : 13/527670

DATED : August 25, 2015

INVENTOR(S) : Alexander Andrianov

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification, column 5; line 20, please delete
“execute all updates L,;*L"g; for K<=I"

And insert
—-execute all updates L *L'; for K<=I--

In the Claims, claim 1; line 36, please delete
“identifying at least one task for each of the dense blocks;

Ex

And insert
--identifying at least one task for each of the dense blocks;
identifying, for each task, any operations on which the task is dependent;--

Signed and Sealed this
Twenty-ninth Day of December, 2015

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

